HitbotStudio 黑豹 上位机使用说明书

版本更新记录

版本号	发布时间	更新内容	修订者	备注
1.0.0	2019年8月27号	初版发布		
1.1.0	2020年6月02号	 1. 脚本模块添加相应api; 2. 添加r轴(舵机)控制接口; 3. 解决部分bug; 	马吉宏	

第一章 公司简介	6
第二章 软件操作指南	7
2.1 HitbotStudio黑豹 软件使用说明	7
2.1.1 HitbotStudio 功能模块说明	7
2.1.2 HitbotStudio 上位机公共界面说明	8
2.2 在线示教功能	10
2.3 写字画画功能	···12
2.4 激光雕刻功能	…13
2.5 鼠标跟随功能	…14
2.6 Blockly 功能······	…15
2.7 脚本运行功能	···16
2.8 3D 打印功能······	…17
2.9 在线升级功能	18
附录1:脚本模块API说明······	20
1、m_CHitbotControl.m_GripConfig(bEnble, fAngle)	20
2、CHitbotControl.m_IOConfig("PortA_GP1", "IO_modeNotInit", output	t,
pwm_dutu, pwm_cycle, pwm_prescaler)	20
3、CHitbotControl.m_change_attitude()	20
4、CHitbotControl.m_enable_cupula(bEnable)	··· 21
5、CHitbotControl.m_enable_motor(bEnable)	··· 21
6、CHitbotControl.m_get_j1()	21

目录

7、CHitbotControl.m_get_j2()	22
8、CHitbotControl.m_get_r()	·· 22
9、CHitbotControl.m_get_x()	22
10、CHitbotControl.m_get_y()	22
11、CHitbotControl.m_get_z()	23
12、CHitbotControl.m_moveJ(pos_number,speed)	·· 23
13、CHitbotControl.m_moveL(pos_number,speed)	···23
14、CHitbotControl.m_postion_move_angle(z, angle1, angle2, angleR,	
speed, blist)	···24
15、CHitbotControl.m_postion_move_xyz(type, x, y, z, speed, blist)	··· 24
16、CHitbotControl.m_read_ioin_state("PortA_GP1")	·· 24
17、CHitbotControl.m_read_ioout_state("PortA_GP1")	·· 25
18、CHitbotControl.m_single_joint_move(axis, distance, speed)	···25
19、CHitbotControl.m_stoped()	·· 25
20、CHitbotControl.m_tcp_connect("127.0.0.1",7788)	···26
21、CHitbotControl.m_tcp_recv()	··· 26
22、CHitbotControl.m_tcp_send("send_data")	···26
23、CHitbotControl.m_udp_connect(30020,"127.0.0.1",7799)·····	···27
24、CHitbotControl.m_udp_recv()	·· 27
25、CHitbotControl.m_udp_send("send_data")	·· 27
26、CHitbotControl.m_wait_stop()	···28
27、CHitbotControl.m_xyz_move(direction, distance, speed)	·· 28

第一章 公司简介

慧灵科技(深圳)有限公司,是机器人领域领先的轻量型协作机械臂和电动夹爪等产品提 供商。通过近 10 年的自主研发积淀,慧灵科技已成功从成本和应用性等维度降低了中小企业 自动化改造的门槛,以高效、低成本、模块化的方式输出领先的自动化解决方案服务。 慧灵科技成立于 2015 年,核心成员来自哈尔滨工业大学,拥有超一流的技术与解决方案团队, 于 3 年内先后获得联想之星(世界500 强控股孵化器)、顺为资本等投资机构的 4 轮投资。 Z-Arm 协作机械臂作为国内罕见的工业级桌面型机械臂,通过核心零部件自主 研发的技术革新,大 幅降低了企业自动化改造的成本,实现了千元售 价,面市半年销量即破千台的成绩。目前,慧灵科 技的直销及代理商 通路已覆盖全球, Z-Arm 与电动夹爪 EFG 系列已拥有几千家客户, 其中 包括华为、富士康、宝洁、华大基因等世界 500 强及行业龙头企业,并成功出口至美国、日本、 加拿大等数十个海外国家。

公司通过引进先进的生产、检测设备和工艺技术,建立了从市场 开发、工程评审、过程 控制、品质保证和售后服务的一整套现代管理体系。未来,慧灵科技将继续以技术创新为基石, 在深耕轻工业市场的基础上,探索新型应用场景的可能性,让更多的企业提升效率,帮助更多 的人解放双手,从中国制造到中国创造,赋予工业 4.0 赛道更多活力。

第二章 软件操作指南

2.1 HitbotStudio黑豹 软件使用说明

2.1.1 HitbotStudio 功能模块说明

HitbotStudio黑豹 小机械臂具有 鼠标跟随、激光雕刻、写字画画、在线示教、脚本运行、 Blockly 图形化编程 和 3D 打印等功能,用户可以通过控制 1620 上位机软件来实现这些功能。支持功能如图 2.1所示。详细描述如表格 2.1 所示。

图 2-1 1620 上位机主界面的功能模块

表2-1 1620 功能模块说明

模块	功能
鼠标跟随	机械臂根据鼠标的运动轨迹来进行运动
激光雕刻	根据导入图形,用机械臂控制激光进行图形绘制
写字画画	导入字体或图形,用机械臂控制笔进行图形绘制
在线示教	利用示教方式记录机械臂的一系列动作后,控制机械臂重复操作记录的动作
脚本控制	使用 python 脚本语言来控制机械臂运动

Blockly 图形编程	利用图形化编程的方式控制机械臂。用户通过拼图的方式进行编程
3D 打印	使用机械臂进行 3D 打印

用户还可以通过设置 10 配置来添加自己喜欢的外设模块,在主界面的设置按键那里就可 以打开 10 配置窗口,一共有 20 个端口,支持 6 种配置模式,可以让用户实现对多种类型外 设的控制。

2.1.2 HitbotStudio 上位机公共界面说明

HitbotStudio 上位机提供如下公共区域用于所有模块,以实现对机械臂的控制,图 2-2 提供了如图所示的 4 个功能控件

图2-2

如下所示, 表 2-2 是以上控件的功能说明。

表2-2

模块	功能
下拉列表	可以获取电脑的串口外设接入,选择机械臂的串口
连接/断开按钮	列表选中机械臂串口后,点击连接按钮,就可以让软件连接上机械臂; 再次点击可断开机械臂连接
STOP 急停按钮	在机械臂运行时,点击该按钮可急停机械臂的所有正在进行的操作
设置按钮	点击该按钮, 会出现 10 口配置窗口, 来配置用户想要的 10 口模式

图 2-3 显示了机械臂实时状态的仿真机械臂,同时也显示了机械臂的一些实时数据,让用 户可以更加清晰的看到机械臂的实时状态。用户还可以通过拖动仿真机械臂的各个关节来控制机 械臂运动。

图 2-3

如图 2-4 所示 用户可通过四个圆盘按钮 和 两个滑动条,来操作改变机械臂的当前状态。

通过调节 步进滑动条 和 速度滑动条 来设置机械臂变化的大小和变化的速度。

通过四个圆盘按钮,去点击你想改变的机械臂属性的按钮,来让机械臂运动到一个你想 要的位置。

2.2 在线示教功能

点击主界面上的 在线示教 按钮, 就可以进入到 如图 2-5 所示的在线示教 功能界面。

	在线示教		
新建	打开 保存 另存为 Delete 单步移动 开始 停止 下载		☞ 返回
循环 0	-		
导入			
导出		当前表:	
覆盖		命 名:	
复制			
剪切		Save Points	
插入		运行模式:	
删除		O MOVL	MOVJ
清空			
上移		暂停时间:	
下移		0	MS
添加			

图 2-5

图 2-6 所示的是 在线示教 模块对表格控制的按键栏,使用在线示教的功能,首先要做的 就是需要 创建 或者 打开 数据表,图 2-6 分割线的左边就是对 表格 的各种操作,这些 按 钮 的操作都是在程序内部保存的,不会以一种文件格式显示出来。而右边则是对表格数据的一些执 行处理。

1	1-7-7-7				N/ 11		63 I	
新建	打开	保仔	另仔为	Delete	甲步移动	廾 始	停止	卜载

图 2-6

表 2-2 是对应按钮功能的具体说明

表2-3 按钮 功能 新建 新建一个数据表格 打开 打开一个之前保存的表格 保存 保存当前编辑的表格 另存为 把 当前编辑 的表格另存为另外一个表 删除表 显示当前所有的表格来选择删除 单步运行 运行机械臂到当前表格的聚焦行 开始 顺序运行当前表格中的所有数据行 停止 停止当前机械臂的运动 下载 把当前表格数据下载到机械臂,然后就可以脱机 运行表格内容

如下图 2-7 所示的是一些对机械臂运动控制的数据设置空间,通过设置循环次数来循环运 动当前表格的数据;通过设置速度大小来控 制机械臂运动的快慢;而 忽略失步 选项,当你 不勾上的时候,机械臂会有碰撞检测,当机械臂运动在过程中由于被物体阻碍,会停 下来,并报出错误提示,反之,当你勾选上改选项,就不会有错误提示,机械臂也不会 停下来,所以,建议 不勾选。

下图 2-8 所示的就是 在线示教 功能中对表格内部数据行的一系列操作空间。 右边的两个控件栏,是用来设置表格数据的默认参数。其实 运行模式 分两种 : MOVL 模 式 就是机械臂以走直线的方式移动到数据点而 MOVJ 模式 就是已改变角度的模式运行到数据 点,暂停时间就是运行到当前数据点,会停止设置的时间,然后才会运行到下一个数据点。

左边的按键栏,导入 和 导出 按钮,是可以把表格数据以一种sql 格式的文件保存和打开。 而其他的按键,就是用来操作表格内的数据行,添加按钮 就是把当前的机械臂位置状态添加到 表格的数据中。其他的按钮比较简单,就不作解释了。

导入
导出
覆盖
复制
剪切
插入
删除
清空
上移
下移
添加

图2-8

2.3 写字画画功能

点击主界面上的 写字画画 按钮, 就可以进入到 如图 2-9 所示的写字画画 功能界面。功 能实现流程 :

- 1、把配套的笔组件状态机械臂上
- 2、软件连接机械臂
- 3、导入想要绘制的图案或者文字
- 4、调整图形位置,开始绘制图案,等待绘制结束

图 2-9

写字画画模块需要注意的操作主要有:

1、要保证导入的图形在机械臂的可运行区域,可通过点击 准备按钮来检测,通过准备, 机械臂才能正常绘制图形

2、GetZ 按钮可获取到机械臂当前的高度数值,可以先把机械臂调节到想要的写字高度, 然后点击 GetZ 按钮,就能正确的获取到想要的写字高度

3、写字画画不仅能绘制文字和工具栏提供图形,还能通过点击打开 按钮,导入规定图片 格式的图形,来实现绘制。

2.4 激光雕刻功能

点击主界面上的 激光雕刻 按钮, 就可以进入到 如图 2-10 所示的激光雕刻 功能界面。

图2-10

激光雕刻 功能的使用方式和 写字画画 的使用方式差不多,激光绘制的图形是需要用户 击 打开按钮 导入规定图片格式的文件,就会生成对应轮廓的图形,调节位置,准备通过后, 就可以开始绘制了。

需要注意的是,对于 激光硬件 的操作使用,需要调节好激光的聚焦,和根据实际绘制场 景,调节激光的移动速度。

2.5 鼠标跟随功能

点击主界面上的 鼠标跟随 按钮, 就可以进入到 如图 2-11 所示的 鼠标跟随 功能界面。

图2-11

鼠标跟随 功能的使用方法也比较简单,其中需要主要说明的有<mark>时间间隔</mark> 的参数设置,这 个参数设置的是对 鼠标移动轨迹的采样时间间隔,时间间隔越小,越贴近鼠标自身的移动轨迹。

而右边的两个滑动条都是用来设置机械臂高度的变化的,在鼠标跟随开始后,机械臂处于未运动 状态,就可以通过滚动鼠标滚轮来控制机械臂的高度。步进滑动条就是单次高度变化的距离。

那么,如何开启鼠标跟随呢?只要在中间的方框中,双击鼠标,鼠标就会移动到当前的机 械臂坐标,如果通过在有效区域内移动鼠标,机械臂就会跟随着鼠标轨迹来运动。鼠标右键单 击,可退出鼠标跟随。

注意:开始鼠标跟随,也需要机械臂的初始位置在有效移动范围内,当鼠标轨迹超出有效 区域,鼠标跟随操作会自动退出。

2.6 Blockly 功能

Blockly 是 HitbotStudio 具有的一套图形化编程平台,基于谷歌开源的 Google Blockly 开发的。通过这个功能,用户可以通过拼图的方式进行编程来控制机械臂的运行,直观,易懂。

点击主界面上的 Blockly 按钮,就可以进入到 如图 2-12 所示的Blockly 功能界面

图2-12

Blockly 功能主要分四个部分:

第一个部分就是 按键栏 部分,可以 对拼图状态 进行存储打开等操作,点击运行按钮, 就会运行当前的拼图内容。

第二部分是 图形化模块显示区域,包括逻辑、循环、数学以及HitbotAPI,用来组成用户 想要的拼图效果

第三部分是 Blockly 编程窗口,用来组合用户选择的图形模块,来控制机械臂去执行用户 想要的操作。

第四部分是 日志信息 和 图形化模块对应的 python 程序代码

最后就可以充分发挥你的想象力,让机械臂来实现各种有趣的操作啦。

备注: Blockly 功能需要安装对应版本的 Python, 不然运行程序会导致程序崩溃;

2.7 脚本运行功能

点击主界面上的 脚本运行 按钮, 就可以进入到 如图 2-13 所示的 脚本运行 功能界面

脚本运行 这个功能界面就比较简单,主要有 机械臂 功能接口函数窗口,双击所需要的函数,能添加在代码编辑区里面,然后,再在代码编辑区,编写自己所需要的 Python 脚本代码,最后点击 运行按钮,如果代码逻辑出错,日志输出区域就会显示出代码错误,方便用户修改,如果代码编译通过,就可以看到用户所编写的脚本程序效果了。

图2-13

备注: 脚本运行 功能需要安装对应版本的 Python, 不然运行程序会导致程序崩溃

2.8 3D 打印功能

点击主界面上的 3D 打印 按钮, 就可以进入到 如图 2-14 所示的3D 打印 功能界面

						3D	打印		1	
打开		复位	清雪	2	0%		GetZ	20.00 🔹	开始打印	☞ 返回
打印机工作(信息!									

图 2-14

3D 打印模型的操作步骤:

1、安装好 3D 打印所需要的硬件配件,包括打印头,打印挤出机,打印耗材等。

2、把机械臂放置于一个水平面上,还需要一个平台要作为 3D模型放置平台。

3、导入合适大小的模型(.gcode),设置好适合的打印高度,然后就可以开始 3D 打印功能了。 (也可以导入.stl 文件,看看模型效果)

备注: 3D 打印开始后就不能暂停,如果停止了 3D 打印过程,将不能继续上次的打印,需 要重新开始 3D 打印

2.9 在线升级功能

点击主界面上的 在线升级 按钮, 就可以进入到 如图 2-15 所示的 在线升级 功能界面

在3000000000000000000000000000000000000	升级 ———
1	(* 返回
	串口配置 端口: COM12 ▼ 波特率: 1200 ▼
	文件发送
	文件路径:
◎ 清空	传输进度: 0%

图2-15

在线升级功能是用来升级机械臂底层程序使用的,升级步骤如下:

1、主程序需要<mark>断开</mark>与机械臂之间的连接

2、在 在线升级 界面选择对应的串口, 波特率选择 115200, 然后点击 打开串口 按钮

3、机械臂上电后,在机械臂机身后面有两个按钮,先按下功能键按钮,按住不放,然后按下复 位按钮,看到指示灯灭了,则说明机械臂已经进入到固件升级状态

4、回到在线升级功能界面,在文件发送小窗口,点击打开按钮,选择要升级的固件文件,最后 点击发送,发送成功,则表示升级完成,机械臂会自动复位

5、固件升级完成

附录1: 脚本模块API说明

1、m_CHitbotControl.m_GripConfig(bEnble, fAngle)

功能说明	用于控制R轴舵机
<u>\</u>	没有可以获取舵机当前实际位置和R运动是否结束的接口,调用后立刻返回
注意 	此时舵机开始运动,客户应添加相应延迟
	bEnble: bool类型, True使能, False不使能
│ 传入参数 │	fAngle: float类型,舵机的目标角度,deg
返回参数	无

2、CHitbotControl.m_IOConfig("PortA_GP1", "IO_modeNotInit", output, pwm_dutu,

pwm_cycle, pwm_prescaler)

功能说明	配置io类型
注意	无
传入参数	"PortA_GP1": 字符串类型, 目标io名称
	"IO_modeNotInit": 字符串类型, 目标io类型
	Output: int类型, 指定io输出的状态, IO_modeDO模式下有效
	pwm_dutu: float类型, PWM的占空比, IO_modePWM模式下有效
	pwm_cycle: float类型, PWM周期,10_modePWM模式下有效
	pwm_prescaler: float类型, PWM分频,10_modePWM模式下有效
返回参数	无

3、CHitbotControl.m_change_attitude()

功能说明	切换手系

注意	无
传入参数	无
返回参数	无

4、CHitbotControl.m_enable_cupula(bEnable)

功能说明	控制吸盘
注意	吸盘套件要正确安装以后,才能进行控制
传入参数	bEnable: bool类型, True吸气, False释放
返回参数	无

5、CHitbotControl.m_enable_motor(bEnable)

功能说明	控制电机是否使能
注意	传入False,电机掉电,应注意避免发生碰撞
传入参数	bEnable: bool类型, True电机使能, False电机掉电
返回参数	无

6、CHitbotControl.m_get_j1()

功能说明	获取大臂/关节1的当前角度
注意	无
传入参数	无
返回参数	J1_deg: float类型, 大臂/关节1的当前角度

7、CHitbotControl.m_get_j2()

功能说明	获取小臂/关节2的当前角度
注意	无
传入参数	无
返回参数	J2_deg: float类型,小臂/关节2的当前角度

8、CHitbotControl.m_get_r()

功能说明	获取R轴舵机上一次的设定角度
注意	返回值为上一次的设定角度,不是当前的R轴舵机的实际角度
传入参数	无
返回参数	r_deg: float类型, R轴舵机上一次的设定角度

9、CHitbotControl.m_get_x()

功能说明	获取×轴坐标
注意	无
传入参数	无
返回参数	x_mm: float类型, x轴坐标, 单位mm

10、CHitbotControl.m_get_y()

功能说明	获取y轴坐标
注意	无
传入参数	无
返回参数	y_mm: float类型, y轴坐标, 单位mm

11、CHitbotControl.m_get_z()

功能说明	获取z轴坐标
注意	无
传入参数	无
返回参数	z_mm: float类型, z轴坐标, 单位mm

12、CHitbotControl.m_moveJ(pos_number,speed)

功能说明	movej模式运动到指定目标点(pos_number)
注意	1,调用该函数前,需要确保在线示教模块已经加载点位列表
	2,点位编号pos_number在点位列表中确实存在
传入参数	 pos_number: int类型,在线示教模块中的点位编号
	Speed: float类型, 运动速度mm/s
返回参数	无

13、CHitbotControl.m_moveL(pos_number,speed)

功能说明	movel模式运动到指定目标点(pos_number)
注意	1,调用该函数前,需要确保在线示教模块已经加载点位列表
	2, 点位编号pos_number在点位列表中确实存在
传入参数	pos_number: int类型,在线示教模块中的点位编号
	Speed: float类型, 运动速度mm/s
返回参数	无

功能说明	movel模式运动到指定坐标
注意	无
传入参数	z: float类型, z轴坐标, mm
	angle1: float类型,大臂角度,deg
	Angle2: float类型, 小臂角度, deg
	angleR: float类型,此参数无效
	speed: float类型, 速度, mm/s
	blist: bool类型,是否为队列指令
返回参数	无

14、CHitbotControl.m_postion_move_angle(z, angle1, angle2, angleR, speed, blist)

15、CHitbotControl.m_postion_move_xyz(type, x, y, z, speed, blist)

功能说明	xyz运动到指定坐标
注意	无
<u></u> 住入参数	type: int类型, Omovej模式, 1movel模式 x: float类型, x坐标, mm y: float类型, y坐标, mm z: float类型, z坐标, mm
	speed: float类型, 速度, mm/s
返回参数	无

16、CHitbotControl.m_read_ioin_state("PortA_GP1")

功能说明	读取io输入口的状态

注意	无
传入参数	 "PortA_GP1": 字符串类型, 目标10口
返回参数	lo_state: int类型, 1高电平信号, 0无高电平信号

17、CHitbotControl.m_read_ioout_state("PortA_GP1")

功能说明	读取io输出口的状态
注意	无
传入参数	
返回参数	lo_state: int类型, 1高电平, 0为低电平

18、CHitbotControl.m_single_joint_move(axis, distance, speed)

功能说明	单关节移动
注意	相对运动
传入参数	axis: int类型, 0大臂, 1小臂
	distance: float类型,移动角度,deg
	speed: float类型,移动速度,mm/s
返回参数	无

19、CHitbotControl.m_stoped()

功能说明	查询工具栏中的stop按钮是否有按下
注意	while True:或其他循环中建议添加该函数用于判断按钮是否被按下,如果按下则退出程序。如果不进行添加会导致stop按钮无效,甚至软件崩溃
传入参数	无

返回参数	Stoped: int类型, 1 stop按钮被按下

20、CHitbotControl.m_tcp_connect("127.0.0.1",7788)

功能说明	连接tcp服务器
注意	无
传入参数	"127.0.0.1":字符串类型,tcp服务器ip地址
	7788: int类型, tcp服务器端口号
返回参数	Ret: int类型, 1 成功, 0 tcp开启失败, 可能是端口号已被占用

21、CHitbotControl.m_tcp_recv()

功能说明	获取tcp服务器的发送数据
注意	1, 函数非阻塞
	2, 函数返回的是最近一次服务器发送的数据, 前面接受到的数据将会被后
	面接受的数据覆盖掉
	3,调用该函数前,应先调用m_tcp_connect并以返回1
传入参数	无
	Recv_len: int类型,接收到的数据长度,0为没有接收到数据
│返回参数 │	Recv_data:字符串类型,接收到的数据内容

22、CHitbotControl.m_tcp_send("send_data")

功能说明	向tcp服务器发送数据
注意	调用该函数前,应先调用m_tcp_connect并以返回1
传入参数	"send_data":字符串类型,需要发送的数据
返回参数	Send_len: int类型,发送的数据长度, -1代表未与服务器建立连接

功能说明	设置udp客户端,以通讯对方的udp通讯地址
注意	无
	30020: int类型,本地udp客户端的端口号
传入参数	"127.0.0.1":字符串类型,udp服务器ip地址
	7799: int类型, udp服务器端口号
返回参数	Ret: int类型, 1 成功, 0 tcp开启失败, -3 端口号已被占用

23、CHitbotControl.m_udp_connect(30020,"127.0.0.1",7799)

24、CHitbotControl.m_udp_recv()

功能说明	获取udp服务器的发送数据
注意	1, 函数非阻塞
	2, 函数返回的是最近一次服务器发送的数据, 前面接受到的数据将会被后
	面接受的数据覆盖掉
	3,调用该函数前,应先调用m_udp_connect并以返回1
传入参数	无
返回参数	Recv_len: int类型,接收到的数据长度,0为没有接收到数据
	Recv_data:字符串类型,接收到的数据内容

25、CHitbotControl.m_udp_send("send_data")

功能说明	向udp服务器发送数据
注意	调用该函数前,应先调用m_udp_connect并以返回1
传入参数	"send_data":字符串类型,需要发送的数据
返回参数	Send_len: int类型,发送的数据长度,-1代表未与服务器建立连接

26、CHitbotControl.m_wait_stop()

功能说明	等待运动函数结束
注音	1, 阻塞函数
	2, 无法用于m_GripConfig(bEnble, fAngle)动作完成的判定
传入参数	无
返回参数	无

27、CHitbotControl.m_xyz_move(direction, distance, speed)

功能说明	Xyz单轴移动
注意	
	direction: int类型, 0 x轴, 1 y轴, 2 z轴
传入参数	distance: float类型,移动距离,mm
	speed: float类型, 运动速度, mm/s
返回参数	无